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Abstract

Remote photoplethysmography (rPPG) is a technique
that aims to remotely estimate the heart rate of an individ-
ual using an RGB camera. Although several studies use the
rPPG methodology, it is usually applied in a laboratory in
a controlled environment, where both the camera and the
subject are static, and the illumination is ideal for the task.
However, applying rPPG in a real-life scenario is much
more demanding, since dynamic illumination issues arise.
The work presented in this paper introduces a framework to
estimate the heart rate of an individual in real-time using
an RGB camera in a situation characterized by dynamic il-
lumination. Such situations occur, for example, when either
the camera or the subject is moving, and/or the face visibil-
ity is limited. The framework uses a face detection program
to extract regions of interest on an individual’s face. These
regions are combined and constitute the input to a convolu-
tional neural network, which is trained to estimate the heart
rate in real-time. The method is evaluated on three publicly
available datasets, and an in-house dataset specifically col-
lected for the purpose of this study, that includes motions
and dynamic illumination. The method shows good perfor-
mance on all four datasets, outperforming other methods.

1. Introduction

Photoplethysmography (PPG) [2] is an optical measure-
ment method for heart rate (HR) monitoring. A light source
and a photodetector are used at the skin surface to mea-
sure the volumetric variations of blood circulation. The
concept of remote photoplethysmography (rPPG) [28] in-
troduces the ability to remotely estimate the HR of an indi-
vidual using, e.g., an RGB camera.

Remote PPG uses the pulse-induced variation in light ab-
sorption of human tissue caused by changes in blood vol-
ume [13] to allow for cardiovascular measurements. In-
formation about the HR can be acquired from the ob-

tained rPPG signal [23]. However, signals obtained by the
rPPG method are subject to large amounts of noise, which
confounds measurements related to the targeted parame-
ters [30]. Classical approaches that can be applied to con-
nect signals obtained by rPPG to the vital parameters are
different signal filtering techniques [11].

When working with rPPG signals, the main problem is
its sensitivity to external disturbances such as motion and
dynamic illumination. These sources of signal noise often
dwarf the sought-after light intensity variations created by
altering blood volume in the tissue. They also induce signif-
icant changes in the intensity perceived by the RGB sensor.
The work presented in this paper aims to handle some of
these challenges, which often arise if rPPG is used in a real-
life scenario and in situations characterized by dynamic il-
lumination; for instance, when either the camera or the sub-
ject whose HR is being measured is moving and parts of
their face is occluded.

The rest of this paper is organized as follows. In Sec. 2,
related work is discussed. Sec. 3 presents the proposed
workflow, the applied method, and used datasets. The ex-
perimental setup is presented in Sec. 4, and results are pre-
sented in Sec. 5. In Sec. 6, an analysis and discussion of
the results are presented. Finally, Sec. 7 comprises a few
concluding remarks along with planned directions for fu-
ture work.

2. Related Work

Since the first experimentation in 2008 with rPPG and
consumer-level digital cameras for HR estimation [28], sev-
eral approaches have been developed and refined. In [12],
the authors develop their own rPPG signal filtering method,
which is chrominance-based (referred to as CHROM).
CHROM was shown to be more tolerant to motion-induced
distortions than principal component analysis (PCA) and
independent component analysis (ICA) based methods.
An alternative method to rPPG-based HR estimation from
video is to detect the minuscule head movements that heart
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beats generate [3]. In [29], the authors propose a plane
orthogonal-to-skin (POS) algorithm, which projects the
PPG signal onto a plane orthogonal to the skin tone to ex-
tract the pulse signal. The POS algorithm was demonstrated
to surpass the CHROM, PCA and ICA based methods. In
a 2016 paper, the authors estimate a person’s HR from an
RGB video taken with a laptop webcam in an indoor envi-
ronment with constant ambient light [22]. However, these
classic methods often require prior knowledge for region of
interest (ROI) selection, and do not generalize well to new
data.

Two-step convolutional neural network (CNN) based
methods, where one CNN is used to detect the face and ex-
tract the rPPG signal, and a second CNN estimates the HR
from the signal, were suggested in 2017 [25]. An interesting
take on the signal processing pipeline was suggested, where
an attention network was used to calculate the frame differ-
ence and, thus, the motion representation [7]. Some propos-
als combine the first CNN with a long short-term memory
(LSTM) network to process the temporal information con-
tained in video sequences [17]. It is also possible to process
the rPPG signals and estimate vital parameters using deep
learning, which has been demonstrated in [8] with promis-
ing results in ideal settings. Nonetheless, these proposed
neural network-based methods still rely on handcrafted fea-
tures or aligned face images. Also, it is worth noting that
there are difficulties in the statistical comparison of machine
learning-based methods [11, 15, 27].

In 2020 Boccignone et al. [5] proposed an open frame-
work where they implement eight of the classical rPPG
methods, and compare their performance. Botina-Monsalve
et al. [6] propose a real-time PPG signal estimation method
and compare it with PhysNet [31], an end-to-end framework
with spatio-temporal networks. Another real-time frame-
work combines two LSTM networks with a signal quality
attention mechanism to estimate the HR [14]. By using con-
trastive learning, a self-supervised method, in 2023, Birla et
al. [4] improve the HR estimation over other methods.

3. Method
This section outlines the methodology and the experi-

mental approach used to address non-contact HR estimation
in dynamic illumination situations.

3.1. Workflow

To estimate the HR from a video sequence, an end-to-end
framework is introduced. An illustration of this framework
is shown in Fig. 1. The workflow consists of 5 different
steps summarized as follows (in-depth descriptions of each
step is given in the forthcoming sections):

1. Input Video Sequence. In the first step, the video se-
quence from which HR is to be estimated serves as the

1

Input Video Sequence

2

ROI Extraction

3

ROI Video Sequence

4

Deep Learning Architecture

5

Heart Rate Estimation

Fig. 1. Illustration of the end-to-end framework for estimation of
HR from a video sequence.

input to the computational process.

2. ROI Extraction. The five ROIs are extracted from each
frame in the video sequence.

3. ROI Video Sequence. Using the extracted ROIs, a new
image is created.

4. Deep Learning Architecture. To estimate the HR from
the ROI video sequence, deep learning is used.

5. Heart Rate Estimation. In the last step of the frame-
work, the HR is estimated.

Finally, to evaluate and validate the proposed method,
different experiments are performed, see Sec. 4.

3.2. Data

The four datasets used for training and evaluation are
presented in the following subsections.

3.2.1 Public Datasets

Three public datasets were used to train and evaluate the
models. The first dataset is Multimodal Spontaneous Emo-
tion Database (BP4D+), which is a 10 TB dataset created
for the purpose of testing algorithms for analyzing human
behavior [32]. The database includes 140 test subjects with
varying gender, age, and ethnicity. The recorded physio-
logical signal consists of blood pressure, respiration rate,
HR, and electrodermal activity; all with a sampling fre-
quency of 1000 Hz. The resolution of the 2D video cam-
era is 1040 × 1392 pixels, with a frame rate of 25 FPS. In
the database, the participants perform 10 different tasks to
invoke emotions. Only videos with a blood pressure pulse
that can be used to compute the HR as described in Sec. 3.5
are used.

The second dataset is Pulse Rate Detection Dataset
(PURE),1 which consists of video data of 10 participants

1https://www.tu-ilmenau.de/neurob/data-sets/
pulse
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and their corresponding pulse measurements [26]. Captured
video data has a resolution of 640×480 pixels, with a frame
rate of 30 FPS. The physiological measurements consist of
their blood-volume pulse (BVP) and SpO2 reading. The
camera is placed at an average distance of 1.1 meters from
the participants in a daylight illumination condition. Each
participant is recorded in 6 different setups: steady, talking,
slow transition, fast transition, small rotation, and medium
rotation.

The third dataset is COHFACE, where physiological sig-
nals have been collected in more realistic settings [16].
The research presented in this paper made use of the CO-
HFACE dataset made available by the Idiap Research Insti-
tute in Martigny, Switzerland. It consists of a total of 160
videos of 40 participants of different gender and age, along
with their BVP and respiratory rates. The captured videos,
taken under different lighting conditions, have a resolution
of 640× 480 pixels, with a frame rate of 20 FPS.

3.2.2 In-house Dataset – IHD

To mimic realistic scenarios with dynamic illumination set-
tings, an in-house dataset (from now on referred to as the
IHD dataset) was collected. The dataset consists of video
data and HR collected from one individual. For the videos,
a Logitech HD PRO Webcam C920 with fixed exposure and
white balance was used to record the subject’s face at a dis-
tance of about 1 meter from the camera. Each video was
recorded at 20 FPS with a resolution of 640 × 480 pixels
where the duration of each video is 60 seconds. To gather
data on the HR of the subject during the recording of the
video, the OXY-200 Desktop Pulse Oximeter was used [21].

Motions considered in this paper are head rotation and
camera movements. A static scenario is also considered.
The light originates from a single light bulb facing the sub-
ject. It is placed at a distance of about 1 meter from the
subject at three different angles: 0, 45, and 90 degrees rela-
tive to the front of the subject (see Fig. 2).

For the head rotation and the static scenarios, there are
three different light angles and two different settings for the
light source, directed and non-directed. When considering
the movement of the camera, only one angle of the light
source is considered. Combined, these settings make up
the three different main scenarios presented: static, head
rotations, and moving camera. The recorded HR of all the
data ranges from 46 to 163.

3.3. Selecting Region of Interest

The second step of the framework is about selecting the
ROIs. The quality of the rPPG signal varies depending on
where on the face the measurement is performed [18]. For
example, the thickness of the skin is not the same all over
the face, which results in a nonapparent blood volume tis-
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Fig. 2. Illustration of the setup for the gathering of data for the
IHD dataset in the static scenario.

sue variation of the rPPG signal in different regions [10].
Hence, only certain regions of interest on the face should be
considered.

To track a face in the video and select ROIs, the open
source Python library Mediapipe Face Mesh [19] is used,
where both face mesh and face detection functionalities are
available. The face detection tool possesses two modules;
one for face detection and another for identifying land-
marks. The face landmark module localizes 468 differ-
ent facial key points where each key point is composed of
Cartesian coordinates. In Fig. 3, the red circles mark the
face landmarks used for outlining five different ROIs. The
forehead is divided into three regions, the left, center, and
right forehead, to allow for the potential exclusion of re-
gions due to lack of visibility when a region is outside the
line of sight from the camera. The left and right cheeks
are also selected as ROIs due to their performance as rPPG
measurement targets [18].

To extract the pixels of marked regions, one vertex is as-
signed to each face landmark outlining a respective region.
A polygon is then created by interpolating lines between ad-
jacent vertices. To decrease the computational complexity,
the pixels inside of the polygon are extracted by first select-
ing a rectangle in the image defined by the maximum and
minimum of the x and y values of the edges of the polygon,
as illustrated in Fig. 4.

When the surface of an ROI is angled relative to the cam-
era, the quality of the signal is decreased. Because of this,
ROIs that are captured at an angle exceeding a too angled
state are removed from down-stream processing. This is
done by comparing the area of the ROI to the total area
of all ROIs in the same region. The ROIs are divided
into two different regions, the forehead and the cheeks.
To compute the area of an ROI, the trapezoid formula for
a simple polygon is used, where the area is described by
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Fig. 3. Face landmarks that are created by the Mediapipe Face
Mesh program, and extracted ROIs. The areas with red, green,
and blue outlines represent the right, center and left forehead, and
the areas with yellow outlines represent the right and left cheek.

Fig. 4. Extraction of pixels by first selecting a rectangle defined
by the maximum and minimum of the x and y values of the edges
of the polygon, and then computing the pixels of the rectangle that
belong to the polygon.

A = 1
2

∣∣∣∑n−1
i=1 (yi+yi+1)(xi−xi+1)+(yn+y1)(xn−x1)

∣∣∣,
where n is the total number of vertices defining the polygon,
xi and yi are the x and y coordinates of vertex i, and A is
the total area of the ROI. To compute if an ROI is too angled
in relation to the camera, the area of the ROI is considered.
For the forehead and cheek regions, if the area of an ROI
contributes to less than 20 and 30 percent of the total region
area, respectively, the ROI is excluded from the computa-
tion of the rPPG signal.

To ensure that the quality of the data from each dataset
is the same, all the data from the different datasets need to
roughly have the same resolution. Also, a criterion in this
work is that the method should be applicable in real-time.
Due to this, the resolution of all datasets was lowered to
320 × 240 (except for the BP4D+ dataset that has a differ-

ent aspect ratio, and therefore had its resolution changed to
260× 348).

3.4. Extracting Regions of Interest

The relevant ROIs (see Sec. 3.3) are combined into a new
image. First, for each ROI a temporary image is created
with width and height equal to w and h, respectively. Here,
w = xmax − xmin and h = ymax − ymin, where xmin,
ymin, xmax, and ymax are minimum and maximum values
for x and y positions of pixels for each ROI. The tempo-
rary images are then resized into 20 × 20 images that are
placed in a row by adding a black strip with width of 5 pix-
els between each two images, resulting in an image of size
20× 120 as the input to the deep neural network.

The HR is time-dependent as it represents the number of
heartbeats per minute. It is not possible to learn and pre-
dict the HR based on a single frame; instead, a sequence
of frames with a corresponding HR is considered as a data
point to be used for training. This sequence should be
long enough to capture at least a couple of heartbeat cy-
cles. Henceforth, the number of frames chosen is 40, which
corresponds to 2 seconds.

To make a fair comparison of results between datasets,
the frame rate had to be altered such that it is the same for
all datasets. This was done by interpolating every pixel in
the sequence of images of the extracted ROIs. A new se-
quence of images with a frame rate of 20 was obtained, by
evaluating the interpolated pixels at every 0.05 second step.

3.5. Converting PPG Signal to Heart Rate

Since there is no exact universal method for determining
HR, the HR in the datasets may have been computed differ-
ently. Hence, two similar rPPG signals can potentially be
connected to two different HRs, even though they should be
identical. To combat this, the HR is computed directly from
the presented PPG signal in the different datasets to ensure
it is computed in the same way. This was done by imple-
menting a peak detection algorithm to compute the HR. The
result of this process is shown in Fig. 5, where the HR is
computed by taking the average time over nine peaks and
converting it to one minute. The HR per minute is calcu-
lated by:

bpmi =

{
bpmi−1, if ti is not a peak,∑j+4

k=j−4
60

8(t′k+1−t′k)
, if ti is a peak,

(1)

where bpmi is the heart rate at time ti, ti is the time of the
PPG signal at point i, t′ is the series of times when peaks
occur, and t′j represents the peak corresponding to time ti.
The sum can be computed when there are at least four peaks
to the right and left of the current time ti. However, for ev-
ery peak that does not exist, it can simply be skipped in the
calculation and the number 8 in the denominator of Eq. (1)
is decreased by one.
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Fig. 5. The upper image shows an obtained PPG signal from an
oximeter and the detected peaks of said signal. The lower image
displays the HR calculated by Eq. (1) from the PPG signal.

When computing the HR of subjects in the BP4D+
dataset, introduced in Sec. 3.2.1, the blood pressure mea-
surement over time is used, since no PPG signal is provided.

3.6. Deep Learning Architecture

The input data to the neural network consists of images
with a width of 120 pixels (5 ROIs with a padding of 5 pix-
els between each ROI), a height of 20 pixels, and 3 color
channels (red, green, and blue). The number of frames in
each input sample is T , which represents the time duration,
resulting in an input sample of size T × 20× 120× 3. The
value of T , that is, the number of frames, was set to 40, cor-
responding to 2 seconds. The deep neural network archi-
tecture proposed in this study, HR-rtCNN, is based on the
3 dimensional convolutional neural network (3DCNN). No
padding is applied to any of the 3DCNN layers. In Tab. 1,
the HR-rtCNN network is presented. Since the prediction of
the HR is a regression task, a fully connected layer (Dense)
with one node is added as the last layer of the deep neural
network.

4. Experiments

To create a baseline, the elected framework was tested on
the different public datasets. Then, for the experiments with
dynamic illumination settings, data from the IHD dataset
was used. To measure the real-time applicability of the HR-
rtCNN, the mean computational time for processing a frame
in IHD was measured in the pre-processing stage, as well as
the inference time of the network. For the training of each
network, the Adam optimizer was used with a learning rate
of 0.0001. The rest of the hyperparameters were kept ac-
cording to their default values in Keras [9]. Each network
was trained for a maximum of 1000 epochs using early stop-
ping with a patience of 50 epochs. The final network was

Tab. 1. 3DCNN-based network named (HR-rtCNN). The input to
the network is of size T × 20 × 120 × 3, where T is the number
of frames. The total number of parameters is 1164897.

Layer # of Nodes Kernel Size

3DCNN 8 1× 3× 3
Batch Normalization
3DCNN 32 3× 1× 1
Batch Normalization
Dropout 0.5 – –
Avg Pool – 2× 2× 2
3DCNN 64 3× 3× 3
Batch Normalization
Dropout 0.5 – –
Avg Pool – 2× 2× 2
3DCNN 128 3× 3× 3
Batch Normalization
Dropout 0.5 – –
Avg Pool – 2× 2× 2
3DCNN 256 3× 3× 3
Batch Normalization
Dropout 0.5 – –
Global Avg Pool – –
Dense 1 –

saved as a frozen graph using Tensorflow [1]. The hardware
used in this project is an AMD EPYC 7742 64-Core Proces-
sor, an NVIDIA A100 SXM4 40GB GPU, and one terabyte
of RAM.

The elected method was compared to the state-of-the-
art method PhysNet [31] as well as the chrominance-based
method CHROM [12]. The face detection was implemented
using Mediapipe Face Mesh [19]. Since data sequences of
2 seconds are used and the PhysNet as well as the CHROM
methods compute a filtered rPPG signal, the resulting HR
was computed by implementing a peak detector and mea-
suring the time between peaks. In the case where only one
peak is present, the width of the wave corresponding to the
peak was measured to compute the HR.

To measure the accuracy of the model, the mean aver-
age error (MAE), root mean squared error (RMSE), mean
absolute percentage error (MAPE), coefficient of determi-
nation (R2), and Pearson correlation coefficient (r) are
used. The elected method is also evaluated on real-time
data, where the mean time it takes for the neural network
to process each frame in a video is measured.

4.1. Experiment Setup with the Public Datasets

The developed model was tested on the four different
datasets according to Sec. 3.2. The deep neural network
was trained on each of the public datasets separately. Ev-
ery data sample was chosen such that there is no overlap
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between data samples. For example, if the original video is
60 seconds and the time duration of each sample is set to
2 seconds, 30 data samples can be made from the original
video. For each training session, 65% of the data samples
in the dataset are used for training, 20% for validation, and
15% for testing. The number of data samples in the train-
ing, validation, and test sets for each of the different public
datasets is given in Tab. 2. In the datasets, for most subjects,
the recorded HR has a small deviation from the mean HR.
To prevent this bias in the training, more weight should be
given to data that is further from the mean HR in the loss
function. Therefore, the MSE function is used as the loss
function during the training.

Tab. 2. Number of data samples for the training, validation, and
test sets for the datasets.

Dataset Training Size Validation Size Testing Size

IHD 16342 5030 3772
COHFACE 3233 995 747
PURE 1310 404 303
BP4D+ 18143 5583 4187

4.2. Experiment Setup with Dynamic Scenario Data

When performing the evaluation for the dynamic scenar-
ios, the network was trained on the IHD dataset. The data
split of the IHD dataset used for the training and evaluation
of the deep neural network was 65% for training, 20% for
validation, and 15% for testing, for each scenario. The data
samples in the training, validation, and test sets were ran-
domized from within each scenario. All data with uninter-
pretable PPG signal or blood pressure was excluded from
the study. The total number of data samples in the train-
ing, validation, and test sets for the IHD dataset is given in
Tab. 2. For the training of the network, the training and vali-
dation sets from all scenarios were combined, while the test
sets were kept separate.

4.3. Measurement of Computational Time

The measurement of the computational time for the
elected method was separated in two parts. First, the com-
putational time of the pre-processing stage was estimated by
computing the time it takes for a frame to be pre-processed.
The mean time, with corresponding standard deviation, was
computed for each video in the IHD dataset. From the ob-
tained values, the maximum mean and standard deviation
were used. When measuring the inference time of the ob-
tained network, the mean time with corresponding standard
deviation of each data sample was computed.

5. Results
The experimental results of the trained neural network on

test sets derived from the COHFACE, PURE, and BP4D+
datasets are presented in Tab. 3. Evaluation metrics used are
MAE, RMSE, MAPE, R2, and r, as mentioned in Sec. 4.
The predicted HRs acquired from the HR-rtCNN model are
plotted against the ground truth HRs for the COHFACE,
PURE, and BP4D+ datasets in Fig. 6. This shows how well
the network performs for the different ranges of HR for the
public datasets.
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Fig. 6. The predicted HR of HR-rtCNN plotted against the ground
truth with a time duration of 2 seconds for the (a) COHFACE,
(b) PURE, and (c) BP4D+ datasets.

The results of the HR-rtCNN model on the in-house
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Tab. 3. Evaluation results of the neural network architectures as well as the CHROM method on the test sets derived from the public
datasets. The time duration of each video sequence is 2 seconds, corresponding to 40 frames.

Dataset HR-rtCNN PhysNet CHROM

MAE RMSE MAPE R2 r MAE RMSE MAPE R2 r MAE RMSE MAPE R2 r

COHFACE 2.92 3.83 4.26 0.89 0.96 6.81 10.11 9.85 0.26 0.69 36.81 49.83 53.96 -17.38 0.08
PURE 4.30 5.73 6.10 0.94 0.97 3.87 8.82 6.54 0.86 0.93 21.45 38.59 35.74 -1.56 0.34
BP4D+ 5.69 7.33 6.80 0.73 0.86 4.31 6.71 5.27 0.78 0.89 15.17 26.97 19.01 -2.71 0.31

dataset are displayed in Tab. 4. The predicted HR is plot-
ted against the ground truth HR for each scenario in Fig. 7.
The results of the computational time measurements, as de-
scribed in Sec. 4.3, is displayed in Tab. 5.
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Fig. 7. The predicted HR of HR-rtCNN for the test set for the
different scenarios in the IHD dataset. The time duration is 2 sec-
onds.

6. Discussion
Overall, the prediction results for all the datasets

achieved good results for all metrics when using HR-
rtCNN, as seen in Tab. 3. The high R2 value indicates that
the neural network has found patterns in the data. The ob-
jective function used for the training was the MSE function,
meaning that the optimization aims to minimize the RMSE
for every dataset. It might be possible to achieve lower val-
ues of MAE and MAPE if the objective function incorpo-
rates these metrics. However, the MAE and MAPE metrics
might present deceptive results for the context of HRs in the
datasets. For MAE, there will be a bias towards more com-
mon HRs in the training data, which worsen the prediction
of HRs that deviate from the norm. When scaling the error
based on the actual value of the HR, as in MAPE, the abso-
lute value of the error will have a bias towards lower HRs,
as a specific value of the error would have a much higher
impact on the MAPE value for lower HRs than for higher
ones.

The CHROM method performs poorly, as seen in Tab. 3
and Tab. 4. This may be due to that the short 2-second

video sequences make it extra susceptible to interference
from noise. Since CHROM follows a preset formula, no
special care is taken to adapt to the specific settings in the
datasets, which further decreases its performance. This may
explain why it performs worse than the deep learning based
methods.

When comparing HR-rtCNN with PhysNet, HR-rtCNN
generally achieves better results for all metrics for each of
the different datasets (see Tab. 4). The reason for this could
be that the HR-rtCNN is an end-to-end network that di-
rectly connects a sequence of pre-processed images to the
HR while PhysNet computes a filtered rPPG signal. Be-
cause the time duration of the sequence is 2 seconds, an
accurate HR could be difficult to compute by measuring the
distance between peaks. This would significantly decrease
the accuracy in the presence of low-quality data. The CO-
HFACE dataset has about 0.04 bits per pixel, while BP4D+
and PURE have about 4 and 10 bits per pixel, respectively.
This indicates that the COHFACE dataset has been com-
pressed to a high degree, lowering the quality of the rPPG
signal present in the video [20]. This might be the cause of
why a higher R2 value was achieved for PURE, even though
there is dynamic illumination present whilst COHFACE is
static. In the BP4D+ dataset, there is a great number of
participants, creating more variation in the data. There is
also dynamic illumination induced by spontaneous motions
of participants in the video data, causing a decrease in ac-
curacy for both HR-rtCNN and PhysNet. The PURE and
BP4D+ datasets have a greater range of HRs than the CO-
HFACE dataset, as observed in Fig. 6. A consequence of
this might be an increase in variations of the predicted HR,
resulting in higher values for the metrics MAE, RMSE, and
MAPE.

In the IHD dataset, more extensive dynamic illumina-
tion is present, affecting the results negatively for both HR-
rtCNN and PhysNet, possibly explaining why it performs
worse compared to the public datasets. In Fig. 7, a notable
bias can be observed, where there appears to be 2 different
clusters of data points. The HR being recorded at a normal
and an elevated state caused this. The higher heart state was
achieved by performing cardiovascular exercises before the
recording. Not enough time might have elapsed for the HR
to reach normal levels before ending the recording, explain-
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Tab. 4. Evaluation results of the neural network architectures as well as the CHROM method on the test set derived from the IHD dataset
for the different scenarios. The metrics displayed are MAE, RMSE, MAPE, R2, and r. The time duration of each video sequence is
2 seconds, corresponding to 40 frames.

Scenario HR-rtCNN PhysNet CHROM

MAE RMSE MAPE R2 r MAE RMSE MAPE R2 r MAE RMSE MAPE R2 r

Static 5.60 7.43 7.15 0.79 0.89 6.23 9.78 7.99 0.62 0.81 33.62 43.78 43.30 -6.62 0.01
Head Rotation 6.29 8.33 7.43 0.71 0.86 13.47 20.27 15.94 -0.67 0.40 32.51 42.16 38.15 -6.52 -0.03
Moving Camera 6.23 8.92 7.26 0.45 0.69 22.74 29.60 28.29 -4.49 0.02 32.65 42.48 40.21 -10.52 0.01

Tab. 5. Mean computational time with corresponding standard de-
viation of the frame pre-processing time and inference time.

Method Pre-processing Inference Time

HR-rtCNN 14.9 ± 6.7 ms 3.0 ± 0.4 ms
PhysNet 101.8 ± 51.0 ms 7.4 ± 2.2 ms

ing the presence of 2 separate clusters in Fig. 7. The net-
work performs noticeably worse for HRs above 120, which
might be due to the lack of training data for those ranges of
the HR.

In Tab. 4, the results for the test set of the 3 different
scenarios in the IHD dataset are displayed. For the static
scenario, both methods attain better performance, which
was expected. The introduction of head rotations resulted
in a noticeably lowered predictive capability. For PhysNet,
a negative R2 value is obtained, meaning that it performs
worse than constantly predicting the HR as the mean HR
of the test set. When introducing movement of the camera,
the predictive capability of PhysNet is next to none. For the
HR-rtCNN method, there is a significant decrease in the R2

and r metrics. This could be due to the increased difficulty
for the Mediapipe Face Mesh software to accurately detect
the face. There is also an underrepresentation of data col-
lected with a moving camera, which could have contributed
to the increased error in the evaluation.

The resulting computational time for the two deep learn-
ing based methods is observable in Tab. 5. Due to the video
sequences having 20 frames per second, there is 50 ms be-
tween each frame. To achieve real-time performance, the
computations need to be faster than this. For HR-rtCNN,
the combined time for the pre-processing and the inference
is about 18 ms, implying real-time applicability. The low
standard deviation of both the pre-processing time and the
inference time also support this. For PhysNet, the pre-
processing takes about 101 ms, which does not allow for
real-time usage. The reason for the difference in computa-
tional time of the pre-processing is caused by PhysNet using
the original resolution of the videos, as well as extracting a
128× 128 normalized region of the face.

7. Conclusions and Future Work

The main contribution of the work presented in this pa-
per is the proposal of an end-to-end neural network based
framework designed to estimate subjects’ HRs in real-time
from short two-second video sequences accompanied by
dynamic illumination. Five face ROIs are extracted, en-
abling a higher resilience to the subject’s movements and
removing the background, thereby resulting in a better sig-
nal quality. The framework also predicts the HR directly in-
stead of predicting a PPG signal, as many other methods do.
Furthermore, the evaluation of the deep neural network on
the COHFACE, PURE, BP4D+, and IHD datasets, shows
that it generally outperforms other methods with an RMSE
value of 8.920 and R2 value of 0.452 for the most chal-
lenging situations. Also, with an average computing time
of 18 ms per frame (compared to 50 ms between frames),
faster than real-time performance is ensured. Hence, the
main conclusion is that it is possible to estimate the HR of a
subject from a distance with good performance in realistic
situations characterized by movements and dynamic illumi-
nation. However, considering the limitations of the dataset
used for training, which inevitably result in a relatively poor
domain generalization of the current model, a recommenda-
tion for the future is to train a model using a larger dataset
collected through a well-designed and specific dynamic il-
lumination to obtain a better generalization ability.

One of the most limiting factors when working with
rPPG based on deep learning, is the need for representa-
tive data, displaying demographic diversity, situations with
dynamic illumination, and pixel distance sizes allowing for
greater HR detection. Therefore, gathering new data should
be prioritized to make the method more practically applica-
ble. Generation of rPPG signals with HR is an optional ap-
proach to circumvent this limitation. However, even though
GAN-based methods for PPG signal generation have been
proposed [24], more in-depth evaluations of HR estimation
networks are needed.
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